Optimal H-inf deconvolution filter theory is exploited for the design of robust fault detection and isolation (FDI) units for uncertain polytopic linear systems. Such a filter is synthesized under frequency domain conditions which ensure guaranteed levels of disturbance attenuation, residual decoupling and deconvolution performance in prescribed frequency ranges. By means of the Projection Lemma, a quasi-convex formulation of the problem is obtained via LMIs. A FDI logic based on adaptive thresholds is also proposed for reducing the generation of false alarms. The effectiveness of the design technique is illustrated via a numerical example.

A robust deconvolution procedure for fault detection and isolation of uncertain linear systems: an LMI approach

CASAVOLA, Alessandro;FAMULARO, Domenico;FRANZE', Giuseppe
2005-01-01

Abstract

Optimal H-inf deconvolution filter theory is exploited for the design of robust fault detection and isolation (FDI) units for uncertain polytopic linear systems. Such a filter is synthesized under frequency domain conditions which ensure guaranteed levels of disturbance attenuation, residual decoupling and deconvolution performance in prescribed frequency ranges. By means of the Projection Lemma, a quasi-convex formulation of the problem is obtained via LMIs. A FDI logic based on adaptive thresholds is also proposed for reducing the generation of false alarms. The effectiveness of the design technique is illustrated via a numerical example.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/128564
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 110
  • ???jsp.display-item.citation.isi??? 88
social impact