In this note we study the existence of subbundles or quotient bundles of the tangent bundle of some non-singular algebraic varieties. It is proved that the tangent bundle of a general complete intersection surface has no subbundles. Then we prove that the tangent bundle $T_{\mathbb{P}^n}$ of the projective space $\mathbb{P}^n$ has no subbundle or quotient bundle of rank r with $2 \leq r \leq 7$ if $r \leq n-2$. Furthermore, if $n+1=p_{1}^kp_{2}^s$ with $p_1$ and $p_2$ odd primes, $T_{\mathbb{P}^n}$ has no sub bundles. For the proof, we use the theory of uniform vector bundles on $T_{\mathbb{P}^n}$.

Subbundles of tangent bundles

OLIVERIO, Paolo Antonio
2004-01-01

Abstract

In this note we study the existence of subbundles or quotient bundles of the tangent bundle of some non-singular algebraic varieties. It is proved that the tangent bundle of a general complete intersection surface has no subbundles. Then we prove that the tangent bundle $T_{\mathbb{P}^n}$ of the projective space $\mathbb{P}^n$ has no subbundle or quotient bundle of rank r with $2 \leq r \leq 7$ if $r \leq n-2$. Furthermore, if $n+1=p_{1}^kp_{2}^s$ with $p_1$ and $p_2$ odd primes, $T_{\mathbb{P}^n}$ has no sub bundles. For the proof, we use the theory of uniform vector bundles on $T_{\mathbb{P}^n}$.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/128988
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact