Finite difference schemes, named Compact Finite Difference Schemes with Spectral-like Resolution, have been used for a less crude approximation of the analytical hardness definition as the second-order derivative of the energy with respect to the electron number. The improved computational schemes, at different levels of theory, have been used to calculate global hardness values of some probe bases, traditionally classified as hard and soft on the basis of their chemical behavior, and to investigate the quantitative applicability of the HSAB principle. Exchange acid-base reactions have been used to test the HSAB principle assuming the reaction energies as a measure of the stabilization of product adducts.
On the applicability of the HSAB principle through the use of improved computational schemes for chemical hardness evaluation
RUSSO, Nino;SICILIA, Emilia
2004-01-01
Abstract
Finite difference schemes, named Compact Finite Difference Schemes with Spectral-like Resolution, have been used for a less crude approximation of the analytical hardness definition as the second-order derivative of the energy with respect to the electron number. The improved computational schemes, at different levels of theory, have been used to calculate global hardness values of some probe bases, traditionally classified as hard and soft on the basis of their chemical behavior, and to investigate the quantitative applicability of the HSAB principle. Exchange acid-base reactions have been used to test the HSAB principle assuming the reaction energies as a measure of the stabilization of product adducts.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.