It is well-known that Muller’s method for the computation of the zeros of continuous functions has order ≈ 1.84 [10], and does not have the character of global convergence. Muller’s method is based on the interpolating polynomial built on the last three points of the iterative sequence. In this paper the authors take as nodes of the interpolating polynomial the last two points of the sequence and the middle point between them. The resulting method has order p = 2 for regular functions. This method leads to a globally convergent algorithm because it uses dichotomic techniques. Many numerical examples are given to show how the proposed code improves on Muller’s method.

A modification of Muller's method

GUALTIERI, Maria Italia;
2006-01-01

Abstract

It is well-known that Muller’s method for the computation of the zeros of continuous functions has order ≈ 1.84 [10], and does not have the character of global convergence. Muller’s method is based on the interpolating polynomial built on the last three points of the iterative sequence. In this paper the authors take as nodes of the interpolating polynomial the last two points of the sequence and the middle point between them. The resulting method has order p = 2 for regular functions. This method leads to a globally convergent algorithm because it uses dichotomic techniques. Many numerical examples are given to show how the proposed code improves on Muller’s method.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/129452
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 14
social impact