Peculiar light emission properties have been observed in cylindrical microcavity hosting dye-doped helixed liquid crystals, which behaves as a fiber-like multidirectional distributed feedback laser. Experimental studies performed for this level of confinement show that laser action is exhibited both axially and radially, indicating a self-organized three-dimensional blue phase-like configuration. Thermal wavelength tunability was observed for both orientations emphasizing two different linear behaviors. The distributed feedback mechanism and the Q factor of the mirrorless resonant cavity result enhanced for axial stimulated emission because of the significant increase in the number of helical periods. In addition, long-lived spectrally narrow defect modes appear within the photonic band gap owing to optical phase jumps which take place in local structural defects.

Band Edge and Defect-Modes Lasing Due to Confinement of Helixed Liquid Crystals in Cylindrical Microcavities

DE LUCA, Antonio;CAPUTO, Roberto;SCARAMUZZA, Nicola;VERSACE, Consolato Carlo;STRANGI, Giuseppe
2005-01-01

Abstract

Peculiar light emission properties have been observed in cylindrical microcavity hosting dye-doped helixed liquid crystals, which behaves as a fiber-like multidirectional distributed feedback laser. Experimental studies performed for this level of confinement show that laser action is exhibited both axially and radially, indicating a self-organized three-dimensional blue phase-like configuration. Thermal wavelength tunability was observed for both orientations emphasizing two different linear behaviors. The distributed feedback mechanism and the Q factor of the mirrorless resonant cavity result enhanced for axial stimulated emission because of the significant increase in the number of helical periods. In addition, long-lived spectrally narrow defect modes appear within the photonic band gap owing to optical phase jumps which take place in local structural defects.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/129637
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 21
social impact