We introduce an iterative method for finding a common element of the set of solutions of an equilibrium problem and of the set of fixed points of a finite family of nonexpansive mappings in a Hilbert space. We prove the strong convergence of the proposed iterative algorithm to the unique solution of a variational inequality, which is the optimality condition for a minimization problem. (C) 2008 Elsevier Inc. All rights reserved.
We introduce an iterative method for finding a common element of the set of solutions of an equilibrium problem and of the set of fixed points of a finite family of nonexpansive mappings in a Hilbert space. We prove the strong convergence of the proposed iterative algorithm to the unique solution of a variational inequality, which is the optimality condition for a minimization problem.
An iterative method for finding common solutions of equilibrium and fixed point problems
MARINO, Giuseppe;COLAO, Vittorio
2008-01-01
Abstract
We introduce an iterative method for finding a common element of the set of solutions of an equilibrium problem and of the set of fixed points of a finite family of nonexpansive mappings in a Hilbert space. We prove the strong convergence of the proposed iterative algorithm to the unique solution of a variational inequality, which is the optimality condition for a minimization problem.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.