In this work, a cohesive zone model of fracture is employed to study debonding in plastically deforming Al/epoxy T-peel joints. In order to model the adhesion between the bonded metal strips, the Park-Paulino-Roesler (PPR) potential based cohesive model (J Mech Phys Solids, 2009; 57: 891-908) is employed, and interface elements are implemented in a finite element commercial code. A study on the influence of the cohesive properties (i.e. cohesive strength, fracture energy, shape parameter and slope indicator) on the predicted peel-force versus displacement plots reveals that the numerical results are mostly sensitive to cohesive strength and fracture energy. In turn, these parameters are tuned until a match between experimental and simulated load displacement curves is achieved. (C) 2011 Published by Elsevier Ltd. Selection and peer-review under responsibility of ICM11
Simulation of debonding in Al/epoxy T-peel joints using a potential-based cohesive zone model
ALFANO, Marco;FURGIUELE, Franco;
2011-01-01
Abstract
In this work, a cohesive zone model of fracture is employed to study debonding in plastically deforming Al/epoxy T-peel joints. In order to model the adhesion between the bonded metal strips, the Park-Paulino-Roesler (PPR) potential based cohesive model (J Mech Phys Solids, 2009; 57: 891-908) is employed, and interface elements are implemented in a finite element commercial code. A study on the influence of the cohesive properties (i.e. cohesive strength, fracture energy, shape parameter and slope indicator) on the predicted peel-force versus displacement plots reveals that the numerical results are mostly sensitive to cohesive strength and fracture energy. In turn, these parameters are tuned until a match between experimental and simulated load displacement curves is achieved. (C) 2011 Published by Elsevier Ltd. Selection and peer-review under responsibility of ICM11I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.