A commutative positive operator valued POV measure F with real spectrum is characterized by the existence of a projection valued measure E (the sharp reconstruction of F) with real spectrum such that F can be interpreted as a randomization of E. This paper focuses on the relationships between this characterization of commutative POV measures and Neumark’s extension theorem. In particular, we show that in the finite dimensional case there exists a relation between the Neumark operator corresponding to the extension of F and the sharp reconstruction of F. The relevance of this result to the theory of nonideal quantum measurement and to the definition of unsharpness is analyzed.

Neumark Operators and Sharp Reconstructions: the Finite Dimensional Case

BENEDUCI, Roberto
2007

Abstract

A commutative positive operator valued POV measure F with real spectrum is characterized by the existence of a projection valued measure E (the sharp reconstruction of F) with real spectrum such that F can be interpreted as a randomization of E. This paper focuses on the relationships between this characterization of commutative POV measures and Neumark’s extension theorem. In particular, we show that in the finite dimensional case there exists a relation between the Neumark operator corresponding to the extension of F and the sharp reconstruction of F. The relevance of this result to the theory of nonideal quantum measurement and to the definition of unsharpness is analyzed.
Positive Operator Valued Measures; Naimark Theorem; Generalized Observables in Quantum Mechanics; Unsharpness; Nonideal Quantum Measurement
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/20.500.11770/131684
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 11
social impact