This paper presents an efficient implementation of the SCIARA Cellular Automata computational model for simulating lava flows using the Compute Unified Device Architecture (CUDA) interface developed by NVIDIA and carried out on Graphical Processing Units (GPU). GPUs are specifically designated for efficiently processing graphic data sets. However, they are also recently being exploited for achieving excellent computational results for applications non-directly connected with Computer Graphics. The authors show an implementation of SCLARA and present results referred to a Tesla GPU computing processor, a NVIDIA device specifically designed for High Performance Computing, anda Geforce GT 330M commodity graphic card. Their carried out experiments show that significant performance improvements are achieved, over a factor of 100, depending on the problem size and type of performed memory optimization. Experiments have confirmed the effectiveness and validity of adopting graphics hardware as an alternative to expensive hardware solutions, such as cluster or multi-core machines, for the implementation of Cellular Automata models.
Cellular Automata and GPGPU: An Application to Lava Flow Modeling
D'AMBROSIO, Donato;RONGO, Rocco;SPATARO, William;
2012-01-01
Abstract
This paper presents an efficient implementation of the SCIARA Cellular Automata computational model for simulating lava flows using the Compute Unified Device Architecture (CUDA) interface developed by NVIDIA and carried out on Graphical Processing Units (GPU). GPUs are specifically designated for efficiently processing graphic data sets. However, they are also recently being exploited for achieving excellent computational results for applications non-directly connected with Computer Graphics. The authors show an implementation of SCLARA and present results referred to a Tesla GPU computing processor, a NVIDIA device specifically designed for High Performance Computing, anda Geforce GT 330M commodity graphic card. Their carried out experiments show that significant performance improvements are achieved, over a factor of 100, depending on the problem size and type of performed memory optimization. Experiments have confirmed the effectiveness and validity of adopting graphics hardware as an alternative to expensive hardware solutions, such as cluster or multi-core machines, for the implementation of Cellular Automata models.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.