The loading of chemotherapics into smart nanocarriers that simultaneously possess more than one useful property for specifically targeting a tumor site improves their therapeutic effectiveness, reducing their side effects. Hence, we proposed a combined approach for the treatment of human breast cancer (BC) consisting of the co-encapsulation of doxorubicin and curcumin or doxorubicin and quercetin into multifunctional niosomes, which results in prolonged blood circulation and an ability to spontaneously accumulate at the tumor site (passive target) and to recognize and bind the tumor cells through dual ligand receptor interactions (active target). The drug-loaded vesicles showed high stability and good capability of loading doxorubicin and antioxidants alone or in combination. Their diameter was around 400 nm. The drugs released from the vesicles were found to be controlled and sustained for over 24 h, with a strong dependence on the co-presence of the loaded molecules. Transferrin and/or folic acid were conjugated on the external surface of the niosomes as ligands, considerably improving the cellular uptake into MCF-7 and MDA-MB-231 malignant cells when compared with the uptake of nonconjugated samples. In vitro evaluation of anticancer activity demonstrated the strong potential of niosomes loaded with a doxorubicin/curcumin combination as useful devices in breast tumor treatment. These features hold great promise for the development of multifunctional devices that combine several advantages such as biocompatibility, stealth properties, loading capability, and active targeting, moving toward the development of more specific and efficient carriers for personalized tumoral therapy.

Further evolution of multifunctional niosomes based on pluronic surfactant: Dual active targeting and drug combination properties

Tavano L;MAURO, Loredana;Bruno L;PICCI, Nevio;ANDO', Sebastiano;MUZZALUPO, Rita
2016-01-01

Abstract

The loading of chemotherapics into smart nanocarriers that simultaneously possess more than one useful property for specifically targeting a tumor site improves their therapeutic effectiveness, reducing their side effects. Hence, we proposed a combined approach for the treatment of human breast cancer (BC) consisting of the co-encapsulation of doxorubicin and curcumin or doxorubicin and quercetin into multifunctional niosomes, which results in prolonged blood circulation and an ability to spontaneously accumulate at the tumor site (passive target) and to recognize and bind the tumor cells through dual ligand receptor interactions (active target). The drug-loaded vesicles showed high stability and good capability of loading doxorubicin and antioxidants alone or in combination. Their diameter was around 400 nm. The drugs released from the vesicles were found to be controlled and sustained for over 24 h, with a strong dependence on the co-presence of the loaded molecules. Transferrin and/or folic acid were conjugated on the external surface of the niosomes as ligands, considerably improving the cellular uptake into MCF-7 and MDA-MB-231 malignant cells when compared with the uptake of nonconjugated samples. In vitro evaluation of anticancer activity demonstrated the strong potential of niosomes loaded with a doxorubicin/curcumin combination as useful devices in breast tumor treatment. These features hold great promise for the development of multifunctional devices that combine several advantages such as biocompatibility, stealth properties, loading capability, and active targeting, moving toward the development of more specific and efficient carriers for personalized tumoral therapy.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/131939
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 6
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 23
social impact