A matrix approach to approximating solutionsof variational inequalities in Hilbert spaces is introduced.This approach uses two matrices: one for iteration process and the otherfor regularization. Ergodicity and convergence (both weak and strong)are studied. Our methodscombine new or well known iterative methods (such as the originalMann's method) with regularized processes involved regularmatrices in the sense of Toeplitz.

Matrix approaches to approximate solutions of variational inequalities in Hilbert spaces

CIANCIARUSO, Filomena;MARINO, Giuseppe;MUGLIA, Luigi;
2016

Abstract

A matrix approach to approximating solutionsof variational inequalities in Hilbert spaces is introduced.This approach uses two matrices: one for iteration process and the otherfor regularization. Ergodicity and convergence (both weak and strong)are studied. Our methodscombine new or well known iterative methods (such as the originalMann's method) with regularized processes involved regularmatrices in the sense of Toeplitz.
ergodic; nonspreading mappings; Cesaro's means
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/20.500.11770/132083
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact