Attenzione: i dati modificati non sono ancora stati salvati. Per confermare inserimenti o cancellazioni di voci è necessario confermare con il tasto SALVA/INSERISCI in fondo alla pagina
IRIS
Deep inelastic scattering and its diffractive component, ep -> e' gamma* p -> e' X N, have been studied at HERA with the ZEUS detector using an integrated luminosity of 52.4 pb(-1). The M(X) method has been used to extract the diffractive contribution. A wide range in the centre-of-mass energy W (37-245 GeV), photon virtuality Q(2) (20-450 GeV(2)) and mass M(X) (0.28-35 GeV) is covered. The diffractive cross section for 2 < M(X) < 15 GeV rises strongly with W, the rise becoming steeper as Q(2) increases. The data are also presented in terms of the diffractive structure function, F(2)(D(3)), of the proton. For fixed Q(2) and fixed M(X), X(P)F(2)(D(3)) shows a strong rise as x(P) -> 0, where x(P) is the fraction of the proton momentum carried by the pomeron. For Bjorken-x < 1 x 10(-3), X(P)F(2)(D(3)) shows positive log Q(2) scaling violations, while for x >= 5 x 10(-3) negative scaling violations are observed. The diffractive structure function is compatible with being leading twist. The data show that Regge factorisation is broken. (c) 2008 Elsevier B.V. All rights reserved. RI Wing, Matthew/C-2169-2008; IBRAHIM, ZAINOL ABIDIN/C-1121-2010; Fazio, Salvatore /G-5156-2010; WAN ABDULLAH, WAN AHMAD TAJUDDIN/B-5439-2010; Doyle, Anthony/C-5889-2009; Ferrando, James/A-9192-2012; Gladilin, Leonid/B-5226-2011
Deep inelastic scattering and its diffractive component, ep -> e' gamma* p -> e' X N, have been studied at HERA with the ZEUS detector using an integrated luminosity of 52.4 pb(-1). The M(X) method has been used to extract the diffractive contribution. A wide range in the centre-of-mass energy W (37-245 GeV), photon virtuality Q(2) (20-450 GeV(2)) and mass M(X) (0.28-35 GeV) is covered. The diffractive cross section for 2 < M(X) < 15 GeV rises strongly with W, the rise becoming steeper as Q(2) increases. The data are also presented in terms of the diffractive structure function, F(2)(D(3)), of the proton. For fixed Q(2) and fixed M(X), X(P)F(2)(D(3)) shows a strong rise as x(P) -> 0, where x(P) is the fraction of the proton momentum carried by the pomeron. For Bjorken-x < 1 x 10(-3), X(P)F(2)(D(3)) shows positive log Q(2) scaling violations, while for x >= 5 x 10(-3) negative scaling violations are observed. The diffractive structure function is compatible with being leading twist. The data show that Regge factorisation is broken. (c) 2008 Elsevier B.V. All rights reserved.
Deep inelastic scattering and its diffractive component, ep -> e' gamma* p -> e' X N, have been studied at HERA with the ZEUS detector using an integrated luminosity of 52.4 pb(-1). The M(X) method has been used to extract the diffractive contribution. A wide range in the centre-of-mass energy W (37-245 GeV), photon virtuality Q(2) (20-450 GeV(2)) and mass M(X) (0.28-35 GeV) is covered. The diffractive cross section for 2 < M(X) < 15 GeV rises strongly with W, the rise becoming steeper as Q(2) increases. The data are also presented in terms of the diffractive structure function, F(2)(D(3)), of the proton. For fixed Q(2) and fixed M(X), X(P)F(2)(D(3)) shows a strong rise as x(P) -> 0, where x(P) is the fraction of the proton momentum carried by the pomeron. For Bjorken-x < 1 x 10(-3), X(P)F(2)(D(3)) shows positive log Q(2) scaling violations, while for x >= 5 x 10(-3) negative scaling violations are observed. The diffractive structure function is compatible with being leading twist. The data show that Regge factorisation is broken. (c) 2008 Elsevier B.V. All rights reserved.
Deep inelastic inclusive and diffractive scattering at Q(2) values from 25 to 320 GeV(2) with the ZEUS forward plug calorimeter
Chekanov S.;Derrick M.;Magill S.;Musgrave B.;Nicholass D.;Repond J.;Yoshida R.;Mattingly M. C. K.;Jechow M.;Pavel N.;Antonioli P.;Bari G.;Bellagamba L.;Boscherini D.;Bruni A.;Bruni G.;Cindolo F.;Corradi A.;Iacobucci G.;Margotti A.;Nania R.;Polini A.;Antonelli S.;Basile M.;Bindi M.;Cifarelli L.;Contin A.;De Pasquale S.;Sartorelli G.;Zichichi A.;Bartsch D.;Brock I.;Hartmann H.;Hilger E.;Jakob H. P.;Juengst M.;Nuncio Quiroz A. E.;Paul E.;Renner R.;Samson U.;Schoenberg V.;Shehzadi R.;Wlasenko A.;Brook N. H.;Heath G. P.;Morris J. D.;CAPUA, Marcella;Fazio S.;MASTROBERARDINO, Anna;Schioppa M.;Susinno G.;TASSI, Enrico;Kim J. Y.;Ibrahim Z. A.;Kamaluddin B.;Abdullah W. A. T. Wan;Ning Y.;Ren Z.;Sciulli F.;Chwastowski J.;Eskreys A.;Figiel J.;Galas A.;Gil M.;Olkiewicz K.;Stopa P.;Zawiejski L.;Adamczyk L.;Bold T.;Grabowska Bold I.;Kisielewska D.;Lukasik J.;Przybycien M.;Suszycki L.;Kotanski A.;Slominski W.;Behrens U.;Blohm C.;Bonato A.;Borras K.;Ciesielski R.;Coppola N.;Drugakov V.;Fang S.;Fourletova J.;Geiser A.;Goettlicher P.;Grebenyuk J.;Gregor I.;Haas T.;Hain W.;Huettmann A.;Kahle B.;Kasemann M.;Katkov I. I.;Klein U.;Koetz U.;Kowalski H.;Lim H.;Lobodzinska E.;Loehr B.;Mankel R.;Melzer Pellmann I. A.;Miglioranzi S.;Montanari A.;Namsoo T.;Notz D.;Parenti A.;Rinaldi L.;Roloff P.;Rubinsky I.;Santamarta R.;Schneekloth U.;Spiridonov A.;Szuba D.;Szuba J.;Theedt T.;Wolf G.;Wrona K.;Molina A. G. Yaguees;Youngman C.;Zeuner W.;Lohmann W.;Schlenstedt S.;Barbagli G.;Gallo E.;Pelfer P. G.;Bamberger A.;Dobur D.;Karstens F.;Vlasov N. N.;Bussey P. J.;Doyle A. T.;Dunne W.;Forrest M.;Rosin M.;Saxon D. H.;Skillicorn I. O.;Gialas I.;Papageorgiu K.;Holm U.;Klanner R.;Lohrmann E.;Schleper P.;Schoerner Sadenius T.;Sztuk J.;Stadie H.;Turcato M.;Foudas C.;Fry C.;Long K. R.;Tapper A. D.;Matsumoto T.;Nagano K.;Tokushuku K.;Yamada S.;Yamazaki Y.;Barakbaev A. N.;Boos E. G.;Pokrovskiy N. S.;Zhautykov B. O.;Aushev V.;Borodin M.;Kozulia A.;Lisovyi M.;Son D.;de Favereau J.;Piotrzkowski K.;Barreiro F.;Glasman C.;Jimenez M.;Labarga L.;del Peso J.;Ron E.;Soares M.;Terron J.;Zambrana M.;Corriveau F.;Liu C.;Schwartz J.;Walsh R.;Zhou C.;Tsurugai T.;Antonov A.;Dolgoshein B. A.;Gladkov D.;Sosnovtsev V.;Stifutkin A.;Suchkov S.;Dementiev R. K.;Ermolov P. F.;Gladilin L. K.;Golubkov Y.u. A.;Khein L. A.;Korzhavina I. A.;Kuzmin V. A.;Levchenko B. B.;Lukina O. Y.u.;Proskuryakov A. S.;Shcheglova L. M.;Zotkin D. S.;Abt I.;Buettner C.;Caldwell A.;Kollar D.;Reisert B.;Schmidke W. B.;Sutiak J.;Grigorescu G.;Keramidas A.;Koffeman E.;Kooijman P.;Pellegrino A.;Tiecke H.;Vazquez M.;Wiggers L.;Bruemmer N.;Bylsma B.;Durkin L. S.;Lee A.;Ling T. Y.;Allfrey P. D.;Bell M. A.;Cooper Sarkar A. M.;Devenish R. C. E.;Ferrando J.;Foster B.;Korcsak Gorzo K.;Oliver K.;Patel S.;Roberfroid V.;Robertson A.;Straub P. B.;Uribe Estrada C.;Walczak R.;Bertolin A.;Dal Corso F.;Dusini S.;Longhin A.;Stanco L.;Bellan P.;Brugnera R.;Carlin R.;Garfagnini A.;Limentani S.;Oh B. Y.;Raval A.;Ukleja J.;Whitmore J. J.;Iga Y.;D'Agostini G.;Marini G.;Nigro A.;Cole J. E.;Hart J. C.;Gabareen A.;Ingbir R.;Kananov S.;Smith O.;Stern A.;Kuze M.;Maeda J.;Hori R.;Kagawa S.;Okazaki N.;Shimizu S.;Tawara T.;Hamatsu R.;Kaji H.;Kitamura S.;Ota O.;Ri Y. D.;Costa M.;Ferrero M. I.;Monaco V.;Sacchi R.;Solano A.;Arneodo M.;Ruspa M.;Fourletov S.;Martin J. F.;Stewart T. P.;Boutle S. K.;Butterworth J. M.;Gwenlan C.;Jones T. W.;Loizides J. H.;Wing M.;Brzozowska B.;Ciborowski J.;Grzelak G.;Kulinski P.;Luzniak P.;Malka J.;Nowak R. J.;Pawlak J. M.;Tymieniecka T.;Ukleja A.;Zarnecki A. F.;Adamus M.;Plucinski P.;Eisenberg Y.;Hochman D.;Karshon U.;Brownson E.;Danielson T.;Everett A.;Kcira D.;Reeder D. D.;Ryan P.;Savin A. A.;Smith W. H.;Wolfe H.;Bhadra S.;Catterall C. D.;Cui Y.;Hartner G.;Menary S.;Noor U.;Standage J.;Whyte J.
2008-01-01
Abstract
Deep inelastic scattering and its diffractive component, ep -> e' gamma* p -> e' X N, have been studied at HERA with the ZEUS detector using an integrated luminosity of 52.4 pb(-1). The M(X) method has been used to extract the diffractive contribution. A wide range in the centre-of-mass energy W (37-245 GeV), photon virtuality Q(2) (20-450 GeV(2)) and mass M(X) (0.28-35 GeV) is covered. The diffractive cross section for 2 < M(X) < 15 GeV rises strongly with W, the rise becoming steeper as Q(2) increases. The data are also presented in terms of the diffractive structure function, F(2)(D(3)), of the proton. For fixed Q(2) and fixed M(X), X(P)F(2)(D(3)) shows a strong rise as x(P) -> 0, where x(P) is the fraction of the proton momentum carried by the pomeron. For Bjorken-x < 1 x 10(-3), X(P)F(2)(D(3)) shows positive log Q(2) scaling violations, while for x >= 5 x 10(-3) negative scaling violations are observed. The diffractive structure function is compatible with being leading twist. The data show that Regge factorisation is broken. (c) 2008 Elsevier B.V. All rights reserved.
Deep inelastic scattering and its diffractive component, ep -> e' gamma* p -> e' X N, have been studied at HERA with the ZEUS detector using an integrated luminosity of 52.4 pb(-1). The M(X) method has been used to extract the diffractive contribution. A wide range in the centre-of-mass energy W (37-245 GeV), photon virtuality Q(2) (20-450 GeV(2)) and mass M(X) (0.28-35 GeV) is covered. The diffractive cross section for 2 < M(X) < 15 GeV rises strongly with W, the rise becoming steeper as Q(2) increases. The data are also presented in terms of the diffractive structure function, F(2)(D(3)), of the proton. For fixed Q(2) and fixed M(X), X(P)F(2)(D(3)) shows a strong rise as x(P) -> 0, where x(P) is the fraction of the proton momentum carried by the pomeron. For Bjorken-x < 1 x 10(-3), X(P)F(2)(D(3)) shows positive log Q(2) scaling violations, while for x >= 5 x 10(-3) negative scaling violations are observed. The diffractive structure function is compatible with being leading twist. The data show that Regge factorisation is broken. (c) 2008 Elsevier B.V. All rights reserved. RI Wing, Matthew/C-2169-2008; IBRAHIM, ZAINOL ABIDIN/C-1121-2010; Fazio, Salvatore /G-5156-2010; WAN ABDULLAH, WAN AHMAD TAJUDDIN/B-5439-2010; Doyle, Anthony/C-5889-2009; Ferrando, James/A-9192-2012; Gladilin, Leonid/B-5226-2011
Deep inelastic scattering and its diffractive component, ep -> e' gamma* p -> e' X N, have been studied at HERA with the ZEUS detector using an integrated luminosity of 52.4 pb(-1). The M(X) method has been used to extract the diffractive contribution. A wide range in the centre-of-mass energy W (37-245 GeV), photon virtuality Q(2) (20-450 GeV(2)) and mass M(X) (0.28-35 GeV) is covered. The diffractive cross section for 2 < M(X) < 15 GeV rises strongly with W, the rise becoming steeper as Q(2) increases. The data are also presented in terms of the diffractive structure function, F(2)(D(3)), of the proton. For fixed Q(2) and fixed M(X), X(P)F(2)(D(3)) shows a strong rise as x(P) -> 0, where x(P) is the fraction of the proton momentum carried by the pomeron. For Bjorken-x < 1 x 10(-3), X(P)F(2)(D(3)) shows positive log Q(2) scaling violations, while for x >= 5 x 10(-3) negative scaling violations are observed. The diffractive structure function is compatible with being leading twist. The data show that Regge factorisation is broken. (c) 2008 Elsevier B.V. All rights reserved.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/132639
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
Citazioni
ND
47
36
social impact
Conferma cancellazione
Sei sicuro che questo prodotto debba essere cancellato?
simulazione ASN
Il report seguente simula gli indicatori relativi alla propria produzione scientifica in relazione alle soglie ASN 2023-2025 del proprio SC/SSD. Si ricorda che il superamento dei valori soglia (almeno 2 su 3) è requisito necessario ma non sufficiente al conseguimento dell'abilitazione. La simulazione si basa sui dati IRIS e sugli indicatori bibliometrici alla data indicata e non tiene conto di eventuali periodi di congedo obbligatorio, che in sede di domanda ASN danno diritto a incrementi percentuali dei valori. La simulazione può differire dall'esito di un’eventuale domanda ASN sia per errori di catalogazione e/o dati mancanti in IRIS, sia per la variabilità dei dati bibliometrici nel tempo. Si consideri che Anvur calcola i valori degli indicatori all'ultima data utile per la presentazione delle domande.
La presente simulazione è stata realizzata sulla base delle specifiche raccolte sul tavolo ER del Focus Group IRIS coordinato dall’Università di Modena e Reggio Emilia e delle regole riportate nel DM 589/2018 e allegata Tabella A. Cineca, l’Università di Modena e Reggio Emilia e il Focus Group IRIS non si assumono alcuna responsabilità in merito all’uso che il diretto interessato o terzi faranno della simulazione. Si specifica inoltre che la simulazione contiene calcoli effettuati con dati e algoritmi di pubblico dominio e deve quindi essere considerata come un mero ausilio al calcolo svolgibile manualmente o con strumenti equivalenti.