Stability properties for solutions of -Delta(m)(u) = f(u) in R-N are investigated, where N >= 2 and m >= 2. The aim is to identify a cri tic a l dimension N-# so that e very non-constant solutionislinearlyunstable when ever 2 <= N < N-#. For positive, increasing and convex nonlinearities f(u), global bounds on f f ''/(f')(2) allows us to find adimension N-#, which is optimal for exponential and power nonlinearities. In the radial setting we can deal more generally with C-1-nonlinearities and the dimension N-# we find is still optimal.
Scheda prodotto non validato
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
Titolo: | LOW DIMENSIONAL INSTABILITY FOR SEMILINEAR AND QUASILINEAR PROBLEMS IN R-N |
Autori: | |
Data di pubblicazione: | 2009 |
Rivista: | |
Handle: | http://hdl.handle.net/20.500.11770/132680 |
Appare nelle tipologie: | 1.1 Articolo in rivista |