Stability properties for solutions of -Delta(m)(u) = f(u) in R-N are investigated, where N >= 2 and m >= 2. The aim is to identify a cri tic a l dimension N-# so that e very non-constant solutionislinearlyunstable when ever 2 <= N < N-#. For positive, increasing and convex nonlinearities f(u), global bounds on f f ''/(f')(2) allows us to find adimension N-#, which is optimal for exponential and power nonlinearities. In the radial setting we can deal more generally with C-1-nonlinearities and the dimension N-# we find is still optimal.

LOW DIMENSIONAL INSTABILITY FOR SEMILINEAR AND QUASILINEAR PROBLEMS IN R-N

SCIUNZI, Berardino
2009-01-01

Abstract

Stability properties for solutions of -Delta(m)(u) = f(u) in R-N are investigated, where N >= 2 and m >= 2. The aim is to identify a cri tic a l dimension N-# so that e very non-constant solutionislinearlyunstable when ever 2 <= N < N-#. For positive, increasing and convex nonlinearities f(u), global bounds on f f ''/(f')(2) allows us to find adimension N-#, which is optimal for exponential and power nonlinearities. In the radial setting we can deal more generally with C-1-nonlinearities and the dimension N-# we find is still optimal.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/132680
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 24
social impact