We consider the Dirichlet problem -Delta(m)- (u) = f (u) in Omega with zero Dirichlet boundary conditions. We prove local summability properties of 1/vertical bar Du vertical bar and we exploit these results to give geometric characterizations of the critical set Z = { x is an element of Omega vertical bar Du(x) = 0}. We extend to the case of changing sign nonlinearities some results known in the case f (s) > 0 for s > 0.

Some results on the qualitative properties of positive solutions of quasilinear elliptic equations

SCIUNZI, Berardino
2007-01-01

Abstract

We consider the Dirichlet problem -Delta(m)- (u) = f (u) in Omega with zero Dirichlet boundary conditions. We prove local summability properties of 1/vertical bar Du vertical bar and we exploit these results to give geometric characterizations of the critical set Z = { x is an element of Omega vertical bar Du(x) = 0}. We extend to the case of changing sign nonlinearities some results known in the case f (s) > 0 for s > 0.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/132682
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 31
  • ???jsp.display-item.citation.isi??? 30
social impact