We consider sign changing solutions of the equation -Delta(m)(u) = |u|(p-1) u in possibly unbounded domains or in R(N). We prove Liouville type theorems for stable solutions or for solutions which are stable outside a compact set. The results hold true for in > 2 and in - 1 < P < pc(N, m). Here pc(N, m) is a new critical exponent, which is infinity in low dimension and is always larger than the classical critical one. (C) 2008 Elsevier Masson SAS. All rights reserved.

Liouville results for m-Laplace equations of Lane-Emden-Fowler type

B. Sciunzi;
2009-01-01

Abstract

We consider sign changing solutions of the equation -Delta(m)(u) = |u|(p-1) u in possibly unbounded domains or in R(N). We prove Liouville type theorems for stable solutions or for solutions which are stable outside a compact set. The results hold true for in > 2 and in - 1 < P < pc(N, m). Here pc(N, m) is a new critical exponent, which is infinity in low dimension and is always larger than the classical critical one. (C) 2008 Elsevier Masson SAS. All rights reserved.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/132683
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 75
  • ???jsp.display-item.citation.isi??? 72
social impact