An aperture-coupled reflectarray element giving a full phase tuning range with a single varactor diode is proposed in this paper for pattern reconfigurability applications. The full phase agility is achieved by a proper optimization of the phase tuning line, thus providing an alternate inductive/capacitive effect able to avoid the use of two varactor diodes, usually adopted in similar existing configurations. The proposed active element structure is adopted to design a demonstrative reflectarray prototype of 3 x 15 radiators. Furthermore, an own synthesis procedure is applied to obtain the proper biasing voltages giving the prescribed H-plane field. Test examples of beam-scanning, multibeam, and shaped-beam patterns are discussed to demonstrate the effectiveness of the approach.
Design and Validation of a Reconfigurable Single Varactor-Tuned Reflectarray
VENNERI, FRANCESCA;COSTANZO, Sandra;DI MASSA, Giuseppe
2013-01-01
Abstract
An aperture-coupled reflectarray element giving a full phase tuning range with a single varactor diode is proposed in this paper for pattern reconfigurability applications. The full phase agility is achieved by a proper optimization of the phase tuning line, thus providing an alternate inductive/capacitive effect able to avoid the use of two varactor diodes, usually adopted in similar existing configurations. The proposed active element structure is adopted to design a demonstrative reflectarray prototype of 3 x 15 radiators. Furthermore, an own synthesis procedure is applied to obtain the proper biasing voltages giving the prescribed H-plane field. Test examples of beam-scanning, multibeam, and shaped-beam patterns are discussed to demonstrate the effectiveness of the approach.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.