Discharge hydrograph estimation during floods, in rivers with torrential regime, is often based on the use of rating curves extrapolated from very low stage–discharge measurements. To get a more reliable estimation, a reverse flow routing problem is solved using water level data measured in two gauged stations several kilometers from each other. Validation of the previous analysis carried out on the flood event of February 2016 at the Europa Bridge and Castiglione Scalo sections of the Crati River (Cosenza, Italy) is based on the use of ‘soft’ discharge measurement data and the comparison of the water level data computed in the downstream gauged section by three different hydraulic models with the ‘hard’ available water level measures. Results confirm that the 1D diffusive model provides more reliable results than the 1D complete one and no significant improvement is gained by the use of a more computationally demanding 2D model.

Unsteady State Water Level Analysis for Discharge Hydrograph Estimation in Rivers with Torrential Regime: The Case Study of the February 2016 Flood Event in the Crati River, South Italy

BIONDI, Daniela
2017-01-01

Abstract

Discharge hydrograph estimation during floods, in rivers with torrential regime, is often based on the use of rating curves extrapolated from very low stage–discharge measurements. To get a more reliable estimation, a reverse flow routing problem is solved using water level data measured in two gauged stations several kilometers from each other. Validation of the previous analysis carried out on the flood event of February 2016 at the Europa Bridge and Castiglione Scalo sections of the Crati River (Cosenza, Italy) is based on the use of ‘soft’ discharge measurement data and the comparison of the water level data computed in the downstream gauged section by three different hydraulic models with the ‘hard’ available water level measures. Results confirm that the 1D diffusive model provides more reliable results than the 1D complete one and no significant improvement is gained by the use of a more computationally demanding 2D model.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/133317
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 0
social impact