In this paper, we study the shortest path tour problem in which a shortest path from a given origin node to a given destination node must be found in a directed graph with non-negative arc lengths. Such path needs to cross a sequence of node subsets that are given in a fixed order. The subsets are disjoint and may be different-sized. A polynomial-time reduction of the problem to a classical shortest path problem over a modified digraph is described and two solution methods based on the above reduction and dynamic programming, respectively, are proposed and compared with the state-of-the-art solving procedure. The proposed methods are tested on existing datasets for this problem and on a large class of new benchmark instances. The computational experience shows that both the proposed methods exhibit a consistent improved performance in terms of computational time with respect to the existing solution method

Solving the Shortest Path Tour Problem

Guerriero F;Laganà D;Musmanno R
2013-01-01

Abstract

In this paper, we study the shortest path tour problem in which a shortest path from a given origin node to a given destination node must be found in a directed graph with non-negative arc lengths. Such path needs to cross a sequence of node subsets that are given in a fixed order. The subsets are disjoint and may be different-sized. A polynomial-time reduction of the problem to a classical shortest path problem over a modified digraph is described and two solution methods based on the above reduction and dynamic programming, respectively, are proposed and compared with the state-of-the-art solving procedure. The proposed methods are tested on existing datasets for this problem and on a large class of new benchmark instances. The computational experience shows that both the proposed methods exhibit a consistent improved performance in terms of computational time with respect to the existing solution method
2013
SPTP
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/133579
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 19
social impact