The flow of a viscous fluid in a plane channel is simulated numerically following the DNS approach, and using a computational code for the numerical integration of the Navier-Stokes equations implemented on a hybrid CPU/GPU computing architecture (for the meaning of symbols and acronyms used, one can refer to the Nomenclature). Three turbulent-flow databases, each representing the turbulent statistically-steady state of the flow at three different values of the Reynolds number, are built up, and a number of statistical moments of the fluctuating velocity field are computed. For turbulent-flow-structure investigation, the vortex-detection technique of the imaginary part of the complex eigenvalue pair in the velocity-gradient tensor is applied to the fluctuating-velocity fields. As a result, and among other types, hairpin vortical structures are unveiled. The processes of evolution that characterize the hairpin vortices in the near-wall region of the turbulent channel are investigated, in particular at one of the three Reynolds numbers tested, with specific attention given to the relationship that exists between the dynamics of the vortical structures and the occurrence of ejection and sweep quadrant events. Interestingly, it is found that the latter events play a preminent role in the way in which the morphological evolution of a hairpin vortex develops over time, as related in particular to the establishment of symmetric and persistent hairpins. The present results have been obtained from a database that incorporates genuine DNS solutions of the Navier-Stokes equations, without superposition of any synthetic structures in the form of initial and/or boundary conditions for the simulations.

Direct numerical simulation of turbulent channel flow on high-performance GPU computing system

Alfonsi G.
;
Primavera L.
2016-01-01

Abstract

The flow of a viscous fluid in a plane channel is simulated numerically following the DNS approach, and using a computational code for the numerical integration of the Navier-Stokes equations implemented on a hybrid CPU/GPU computing architecture (for the meaning of symbols and acronyms used, one can refer to the Nomenclature). Three turbulent-flow databases, each representing the turbulent statistically-steady state of the flow at three different values of the Reynolds number, are built up, and a number of statistical moments of the fluctuating velocity field are computed. For turbulent-flow-structure investigation, the vortex-detection technique of the imaginary part of the complex eigenvalue pair in the velocity-gradient tensor is applied to the fluctuating-velocity fields. As a result, and among other types, hairpin vortical structures are unveiled. The processes of evolution that characterize the hairpin vortices in the near-wall region of the turbulent channel are investigated, in particular at one of the three Reynolds numbers tested, with specific attention given to the relationship that exists between the dynamics of the vortical structures and the occurrence of ejection and sweep quadrant events. Interestingly, it is found that the latter events play a preminent role in the way in which the morphological evolution of a hairpin vortex develops over time, as related in particular to the establishment of symmetric and persistent hairpins. The present results have been obtained from a database that incorporates genuine DNS solutions of the Navier-Stokes equations, without superposition of any synthetic structures in the form of initial and/or boundary conditions for the simulations.
2016
hairpin vortices, turbulent channel flow, Navier-Stokes equations, swirling-strength criterion for vortex detection, quadrant events, DNS
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/133944
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 9
social impact