The quay crane scheduling problem (QCSP) is at the basis of a major logistic process in maritime container terminals: the process of discharging/loading containers from/on berthed vessels. Several groups of containers, laying in one or more stowage portions of a containership, have to be assigned to multiple cranes and discharge/ loading operations have to be optimally sequenced, under some complicating constraints imposed by the practical working rules of quay cranes. The QCSP has been the object of a great deal of research work since the last decade and it is focused in this paper, with the aim of consolidating a promising solution approach based upon the combination of specialized branch & bound (B&B) and heuristic algorithms. A cost-effective solution technique that incorporates the local branching method within a refined B&B algorithm is proposed and its effectiveness is assessed by numerical comparisons against the latest algorithm available in literature.
A local branching-based algorithm for the quay crane scheduling problem under unidirectional schedules
LEGATO Pasquale;TRUNFIO Roberto
2014-01-01
Abstract
The quay crane scheduling problem (QCSP) is at the basis of a major logistic process in maritime container terminals: the process of discharging/loading containers from/on berthed vessels. Several groups of containers, laying in one or more stowage portions of a containership, have to be assigned to multiple cranes and discharge/ loading operations have to be optimally sequenced, under some complicating constraints imposed by the practical working rules of quay cranes. The QCSP has been the object of a great deal of research work since the last decade and it is focused in this paper, with the aim of consolidating a promising solution approach based upon the combination of specialized branch & bound (B&B) and heuristic algorithms. A cost-effective solution technique that incorporates the local branching method within a refined B&B algorithm is proposed and its effectiveness is assessed by numerical comparisons against the latest algorithm available in literature.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.