Fenofibrate is a lipophilic drug used in hypercholesterolemia and hypertriglyceridemia as a lipid-regulating agent; however, it is characterized by poor water solubility and low dissolution rate, which result in a low oral bioavailability. In the present study, sericin/poly(ethylcyanoacrylate) nanospheres are synthesized by interfacial polymerization in aqueous media and investigated as a novel sericin-based delivery system for improved and enhanced oral bioefficacy of fenofibrate. The incorporation of sericin into the prepared cyanoacrylate nanoparticles and their spherical shape are confirmed by Lowry assay and scanning electron microscopy, respectively. Hydrophilic and mucoadhesive properties of the synthesized nanospheres are also evaluated. Finally, both in vitro release and in vivo studies are performed and the oral absorbable amount of fenofibrate is calculated to be higher than 70% when incorporated into the polymeric material, reducing the levels of total cholesterol (TC), triacylglycerols (TG), very low-density lipoproteins (VLDL), and low-density lipoproteins (LDL) compared to fenofibrate alone

Sericin/Poly(ethylcyanoacrylate) Nanospheres by Interfacial Polymerization for Enhanced Bioefficacy of Fenofibrate: In Vitro and In Vivo Studies

Parisi O. I.;Fiorillo M.;Scrivano L.;Sinicropi M. S.;Dolce V.;Iacopetta D.;Puoci F.
;
Cappello A. R.
2015-01-01

Abstract

Fenofibrate is a lipophilic drug used in hypercholesterolemia and hypertriglyceridemia as a lipid-regulating agent; however, it is characterized by poor water solubility and low dissolution rate, which result in a low oral bioavailability. In the present study, sericin/poly(ethylcyanoacrylate) nanospheres are synthesized by interfacial polymerization in aqueous media and investigated as a novel sericin-based delivery system for improved and enhanced oral bioefficacy of fenofibrate. The incorporation of sericin into the prepared cyanoacrylate nanoparticles and their spherical shape are confirmed by Lowry assay and scanning electron microscopy, respectively. Hydrophilic and mucoadhesive properties of the synthesized nanospheres are also evaluated. Finally, both in vitro release and in vivo studies are performed and the oral absorbable amount of fenofibrate is calculated to be higher than 70% when incorporated into the polymeric material, reducing the levels of total cholesterol (TC), triacylglycerols (TG), very low-density lipoproteins (VLDL), and low-density lipoproteins (LDL) compared to fenofibrate alone
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/134419
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 8
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 26
social impact