We show how to combine local Shepard operators with Hermite polynomials on the simplex [C. K. Chui, M.-J. Lai, Multivariate vertex splines and finite elements, J. Approx. Theory 60 (1990) 245–343] so as to raise the algebraic precision of the Shepard–Taylor operators [R. Farwig, Rate of convergence of Shepard’s global interpolation formula, Math. Comp. 46 (1986) 577–590] that use the same data and contemporaneously maintain the interpolation properties at each sample point (derivative data included) and a good accuracy of approximation. Numerical results are provided.

Enhancing the approximation order of local Shepard operators by Hermite polynomials

DELL'ACCIO, Francesco;Di Tommaso F.
2012

Abstract

We show how to combine local Shepard operators with Hermite polynomials on the simplex [C. K. Chui, M.-J. Lai, Multivariate vertex splines and finite elements, J. Approx. Theory 60 (1990) 245–343] so as to raise the algebraic precision of the Shepard–Taylor operators [R. Farwig, Rate of convergence of Shepard’s global interpolation formula, Math. Comp. 46 (1986) 577–590] that use the same data and contemporaneously maintain the interpolation properties at each sample point (derivative data included) and a good accuracy of approximation. Numerical results are provided.
Shepard operator; Hermite interpolation; Algebraic precision; Error Analysis
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/134449
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 16
social impact