Many control problems involve the search for the global extremum in the space of states or the parameters of the system under study, which leads to the necessity of using effective methods of global finite-dimensional optimization. For this purpose use can be made of the geometric algorithms of Lipschitz global optimization, which are developed by the authors. A brief review of these algorithms is presented and they are compared with some algorithms of global search that are often used in technical practice. Numerical experiments are performed on a few known examples of applied multiextremal problems.

Lipschitz global optimization methods in control problems

KVASOV, Dmitry;SERGEEV, Yaroslav
2013

Abstract

Many control problems involve the search for the global extremum in the space of states or the parameters of the system under study, which leads to the necessity of using effective methods of global finite-dimensional optimization. For this purpose use can be made of the geometric algorithms of Lipschitz global optimization, which are developed by the authors. A brief review of these algorithms is presented and they are compared with some algorithms of global search that are often used in technical practice. Numerical experiments are performed on a few known examples of applied multiextremal problems.
Applied global optimization; Numerical methods; Control theory
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/20.500.11770/134657
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 41
  • ???jsp.display-item.citation.isi??? 38
social impact