Two-thirds of long duration gamma-ray bursts (GRBs) show soft X-ray absorption in excess of the Milky Way. The column densities of metals inferred from UV and optical spectra differ from those derived from soft X-ray spectra, at times by an order of magnitude, with the latter being higher. The origin of the soft X-ray absorption excess observed in GRB X-ray afterglow spectra remains a heavily debated issue, which has resulted in numerous investigations on the effect of hot material both internal and external to the GRB host galaxy on our X-ray afterglow observations. Nevertheless, all models proposed so far have either only been able to account for a subset of our observations (i.e. at z> 2), or they have required fairly extreme conditions to be present within the absorbing material. In this paper, we investigate the absorption of the GRB afterglow by a collisionally ionised and turbulent interstellar medium (ISM). We find that a dense (3 cm-3) collisionally ionised ISM could produce UV/optical and soft X-ray absorbing column densities that differ by a factor of 10. However the UV/optical and soft X-ray absorbing column densities for such sightlines are 2-3 orders of magnitude lower in comparison to the GRB afterglow spectra. For those GRBs with a larger soft X-ray excess by up to an order of magnitude, the contribution in absorption from a turbulent ISM as considered here would ease the required conditions of additional absorbing components, such as the GRB circumburst medium and intergalactic medium.

Soft X-ray absorption excess in gamma-ray burst afterglow spectra: Absorption by turbulent ISM

SAVAGLIO, SANDRA;
2016-01-01

Abstract

Two-thirds of long duration gamma-ray bursts (GRBs) show soft X-ray absorption in excess of the Milky Way. The column densities of metals inferred from UV and optical spectra differ from those derived from soft X-ray spectra, at times by an order of magnitude, with the latter being higher. The origin of the soft X-ray absorption excess observed in GRB X-ray afterglow spectra remains a heavily debated issue, which has resulted in numerous investigations on the effect of hot material both internal and external to the GRB host galaxy on our X-ray afterglow observations. Nevertheless, all models proposed so far have either only been able to account for a subset of our observations (i.e. at z> 2), or they have required fairly extreme conditions to be present within the absorbing material. In this paper, we investigate the absorption of the GRB afterglow by a collisionally ionised and turbulent interstellar medium (ISM). We find that a dense (3 cm-3) collisionally ionised ISM could produce UV/optical and soft X-ray absorbing column densities that differ by a factor of 10. However the UV/optical and soft X-ray absorbing column densities for such sightlines are 2-3 orders of magnitude lower in comparison to the GRB afterglow spectra. For those GRBs with a larger soft X-ray excess by up to an order of magnitude, the contribution in absorption from a turbulent ISM as considered here would ease the required conditions of additional absorbing components, such as the GRB circumburst medium and intergalactic medium.
2016
gamma-ray burst; interstellar medium; X-ray astronomy
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/135674
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact