This paper documents a complex sequence of interbedded lapilli-fall, base-surge, and pyroclastic-flow deposits, here named the Monte Guardia sequence, that erupted from volcanic centers in the southern part of Lipari (Aeolian Island Arc). Radiocarbon data from ash-flow tuffs above and below this sequence bracket its eruption between 22,600 and 16,800 years ago. Geologic evidence, however, suggests that this single eruptive cycle had a more restricted duration of years to tens-of-years. The basis for our interpretations comes from data measured at 38 detailed sections located throughout the island. The Monte Guardia sequence rests on a series of lower rhyolitic endogenous domes in the southern part of Lipari and it covers the oldest lavas, lahars, and pyroclastic flows in the north. Only in the northeast part of the island is it covered by younger deposits which there consist of lapilli tuffs and lavas of the Monte Pilato rhyolitic cycle. The deposit ranges in thickness from more than 60 m surrounding the vents in the south to less than a few decimeters at 10 km distance in the north. Throughout most of the island the Monte Guardia sequence overlies a thin andesitic lapilli-fall layer which is a key bed for correlation. This lapilli tuff probably erupted from a volcanic center on another island of the Aeolian Arc (possibly Salina). The principal activity of the Monte Guardia sequence started with an explosion that formed a continuous breccia blanket covering most of the island. Some pumiceous blocks within this breccia are composed of alternating bands of acidic and andesitic composition suggesting that the initiation of pyroclastic activity could have been triggered by magma mixing. Typical Monte Guardia sequence consists of explosive products that grade from magmatic (pumice-fall) to phreatomagmatic (base-surge) character. The eruptive cycle is characterized by a number of energy decreasing megarhythms that start with a lapilli-fall bed and end with a base-surge set that progresses through sand-wave, massive, and planar beds. Isopach maps of the fall and surge deposits indicate that both types were directed to the northwest by prevailing winds. Existing topographic relief was an additional factor that affected the emplacement of surge products. At the end of the cycle andesitic pyroclastic flows and rhyolitic endogenous domes were emplaced above the Monte Guardia deposits near the vent. © 1981 Intern. Association of Volcanology and Chemistry of the Earth's Interior.

Monte Guardia sequence: a Late-Pleistocene eruptive cycle on Lipari (Italy)

CRISCI, Gino Mirocle;DE ROSA, Rosanna;
1981

Abstract

This paper documents a complex sequence of interbedded lapilli-fall, base-surge, and pyroclastic-flow deposits, here named the Monte Guardia sequence, that erupted from volcanic centers in the southern part of Lipari (Aeolian Island Arc). Radiocarbon data from ash-flow tuffs above and below this sequence bracket its eruption between 22,600 and 16,800 years ago. Geologic evidence, however, suggests that this single eruptive cycle had a more restricted duration of years to tens-of-years. The basis for our interpretations comes from data measured at 38 detailed sections located throughout the island. The Monte Guardia sequence rests on a series of lower rhyolitic endogenous domes in the southern part of Lipari and it covers the oldest lavas, lahars, and pyroclastic flows in the north. Only in the northeast part of the island is it covered by younger deposits which there consist of lapilli tuffs and lavas of the Monte Pilato rhyolitic cycle. The deposit ranges in thickness from more than 60 m surrounding the vents in the south to less than a few decimeters at 10 km distance in the north. Throughout most of the island the Monte Guardia sequence overlies a thin andesitic lapilli-fall layer which is a key bed for correlation. This lapilli tuff probably erupted from a volcanic center on another island of the Aeolian Arc (possibly Salina). The principal activity of the Monte Guardia sequence started with an explosion that formed a continuous breccia blanket covering most of the island. Some pumiceous blocks within this breccia are composed of alternating bands of acidic and andesitic composition suggesting that the initiation of pyroclastic activity could have been triggered by magma mixing. Typical Monte Guardia sequence consists of explosive products that grade from magmatic (pumice-fall) to phreatomagmatic (base-surge) character. The eruptive cycle is characterized by a number of energy decreasing megarhythms that start with a lapilli-fall bed and end with a base-surge set that progresses through sand-wave, massive, and planar beds. Isopach maps of the fall and surge deposits indicate that both types were directed to the northwest by prevailing winds. Existing topographic relief was an additional factor that affected the emplacement of surge products. At the end of the cycle andesitic pyroclastic flows and rhyolitic endogenous domes were emplaced above the Monte Guardia deposits near the vent. © 1981 Intern. Association of Volcanology and Chemistry of the Earth's Interior.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/20.500.11770/136183
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 41
  • ???jsp.display-item.citation.isi??? ND
social impact