A flexible host has been selected to achieve, for the first time, functional nanocomposites based on CdSe@ZnS core-shell type quantum dots (QDs) and Au nanoparticles (NPs), simultaneously dispersed in a polymer matrix. Coherent interactions between QDs and plasmonic Au NPs embedded in PDMS films have been demonstrated to lead to a relevant enhancement of the absorption cross-section of the QDs, remarkably modifying the optical response of the entire system. Optical and time resolved spectroscopy studies revealed an active gain-plasmon feedback behind the super-absorbing overall effect.
Plasmon mediated super-absorber flexible nanocomposite for metamaterials
DE LUCA, A;CURRI, MARIA LUCIA;LA DEDA, Massimo;Strangi, G.
2013-01-01
Abstract
A flexible host has been selected to achieve, for the first time, functional nanocomposites based on CdSe@ZnS core-shell type quantum dots (QDs) and Au nanoparticles (NPs), simultaneously dispersed in a polymer matrix. Coherent interactions between QDs and plasmonic Au NPs embedded in PDMS films have been demonstrated to lead to a relevant enhancement of the absorption cross-section of the QDs, remarkably modifying the optical response of the entire system. Optical and time resolved spectroscopy studies revealed an active gain-plasmon feedback behind the super-absorbing overall effect.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Nanoscale_2013.pdf
non disponibili
Licenza:
Non specificato
Dimensione
1.13 MB
Formato
Adobe PDF
|
1.13 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.