The insulin receptor substrate 1 (IRS-1) can translocate to the nuclei and nucleoli of several types of cells. Nuclear translocation can be induced by an activated insulin-like growth factor 1 receptor (IGF-IR), and by certain oncogenes, such as the Simian virus 40 T antigen and v-src. We have asked whether IRS-2 could also translocate to the nuclei. In addition, we have studied the effects of functional mutations in the IGF-IR on nuclear translocation of IRS proteins. IRS-2 translocates to the nuclei of mouse embryo fibroblasts expressing the IGF-IR, but, at variance with IRS-1, does not translocate in cells expressing the Simian virus 40 T antigen. Mutations in the tyrosine kinase domain of the IGF-IR abrogate translocation of the IRS proteins. Other mutations in the IGF-IR, which do not interfere with its mitogenicity but inhibit its transforming capacity, result in a decrease in translocation, especially to the nucleoli. Nuclear IRS-1 and IRS-2 interact with the upstream binding factor, which is a key regulator of RNA polymerase I activity and, therefore, rRNA synthesis. In 32D cells, wild-type, but not mutant, IRS-1 causes a significant activation of the ribosomal DNA promoter. The interaction of nuclear IRS proteins with upstream binding factor 1 constitutes the first direct link of these proteins with the ribosomal DNA transcription machinery.

Insulin-like growth factor I receptor signaling and nuclear translocation of insulin receptor substrates 1 and 2

CASABURI, Ivan;
2003-01-01

Abstract

The insulin receptor substrate 1 (IRS-1) can translocate to the nuclei and nucleoli of several types of cells. Nuclear translocation can be induced by an activated insulin-like growth factor 1 receptor (IGF-IR), and by certain oncogenes, such as the Simian virus 40 T antigen and v-src. We have asked whether IRS-2 could also translocate to the nuclei. In addition, we have studied the effects of functional mutations in the IGF-IR on nuclear translocation of IRS proteins. IRS-2 translocates to the nuclei of mouse embryo fibroblasts expressing the IGF-IR, but, at variance with IRS-1, does not translocate in cells expressing the Simian virus 40 T antigen. Mutations in the tyrosine kinase domain of the IGF-IR abrogate translocation of the IRS proteins. Other mutations in the IGF-IR, which do not interfere with its mitogenicity but inhibit its transforming capacity, result in a decrease in translocation, especially to the nucleoli. Nuclear IRS-1 and IRS-2 interact with the upstream binding factor, which is a key regulator of RNA polymerase I activity and, therefore, rRNA synthesis. In 32D cells, wild-type, but not mutant, IRS-1 causes a significant activation of the ribosomal DNA promoter. The interaction of nuclear IRS proteins with upstream binding factor 1 constitutes the first direct link of these proteins with the ribosomal DNA transcription machinery.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/136530
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 30
  • Scopus 89
  • ???jsp.display-item.citation.isi??? 85
social impact