We relate the existence of some surfaces of general type and maximal Albanese dimension to the existence of some monodromy representations of the braid group $\mathsf{B}_2(C_2)$ in the symmetric group $\mathsf{S}_n$. Furthermore, we compute the number of such representations up to $n=9$, and we analyze the cases $n \in \{2, \, 3, \, 4\}$. For $n=2, \, 3$ we recover some surfaces with $p_g=q=2$ recently studied (with different methods) by the author and his collaborators, whereas for $n=4$ we obtain some conjecturally new examples.

Monodromy representations and surfaces with maximal Albanese dimension

POLIZZI, Francesco
2018-01-01

Abstract

We relate the existence of some surfaces of general type and maximal Albanese dimension to the existence of some monodromy representations of the braid group $\mathsf{B}_2(C_2)$ in the symmetric group $\mathsf{S}_n$. Furthermore, we compute the number of such representations up to $n=9$, and we analyze the cases $n \in \{2, \, 3, \, 4\}$. For $n=2, \, 3$ we recover some surfaces with $p_g=q=2$ recently studied (with different methods) by the author and his collaborators, whereas for $n=4$ we obtain some conjecturally new examples.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/136548
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact