We compute Seshadri constants $\eps(X):= \eps(\O_X(1))$ on $K3$ surfaces $X$ of degrees $6$ and $8$. We prove that if $X$ is any embedded $K3$ surface of degree $2r-2 \geq 8$ in $\PP^r$ not containing lines, then $1 < \eps(X) <2$ if and only if the homogeneous ideal of $X$ is not generated by only quadrics (in which case $\eps(X)=\frac{3}{2}$).

Seshadri constants of $K3$ surfaces of degrees $6$ and $8$

GALATI, CONCETTINA;
2013

Abstract

We compute Seshadri constants $\eps(X):= \eps(\O_X(1))$ on $K3$ surfaces $X$ of degrees $6$ and $8$. We prove that if $X$ is any embedded $K3$ surface of degree $2r-2 \geq 8$ in $\PP^r$ not containing lines, then $1 < \eps(X) <2$ if and only if the homogeneous ideal of $X$ is not generated by only quadrics (in which case $\eps(X)=\frac{3}{2}$).
Seshadri constants; $K3$ surfaces; deformations
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/20.500.11770/137082
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact