We establish the global existence of smooth solutions of the Cauchy problem for the one-dimensional Euler--Poisson model for semiconductors, under the assumption that the initial data are perturbations of a stationary solution of the drift-diffusion equations. The resulting evolutionary solutions converge asymptotically in time to the unperturbed state.

Global Existence and Relaxation Limit for Smooth Solutions to the Euler-Poisson Model for Semiconductors

ALI', Giuseppe;
2000-01-01

Abstract

We establish the global existence of smooth solutions of the Cauchy problem for the one-dimensional Euler--Poisson model for semiconductors, under the assumption that the initial data are perturbations of a stationary solution of the drift-diffusion equations. The resulting evolutionary solutions converge asymptotically in time to the unperturbed state.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/137427
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 69
  • ???jsp.display-item.citation.isi??? 71
social impact