In this paper, global optimization (GO) Lipschitz problems are considered where the multi-dimensional multiextremal objective function is determined over a hyperinterval. An efficient one-dimensional GO method using local tuning on the behavior of the objective function is generalized to the multi-dimensional case by the diagonal approach using two partition strategies. Global convergence conditions are established for the obtained diagonal geometric methods. Results of a wide numerical comparison show a strong acceleration reached by the new methods working with estimates of the local Lipschitz constants over different subrogions of the search domain in comparison with the traditional approach.
Local tuning and partition strategies for diagonal GO methods / Kvasov, Dmitry; Pizzuti, C.; Sergeev, Yaroslav. - In: NUMERISCHE MATHEMATIK. - ISSN 0029-599X. - 94:1(2003), pp. 93-106.
Scheda prodotto non validato
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
Titolo: | Local tuning and partition strategies for diagonal GO methods |
Autori: | |
Data di pubblicazione: | 2003 |
Rivista: | |
Citazione: | Local tuning and partition strategies for diagonal GO methods / Kvasov, Dmitry; Pizzuti, C.; Sergeev, Yaroslav. - In: NUMERISCHE MATHEMATIK. - ISSN 0029-599X. - 94:1(2003), pp. 93-106. |
Handle: | http://hdl.handle.net/20.500.11770/137562 |
Appare nelle tipologie: | 1.1 Articolo in rivista |