In this work an innovative multiscale model able to perform complete failure analyses of fiber-reinforced composite materials subjected to transverse cracking is presented, taking advantage of an adaptive multilevel domain decomposition method in conjunction with a fracture criterion able to track the crack path. Competition between fiber/matrix interface debonding and kinking phenomena from and towards the matrix is accounted for, whereas continuous matrix cracking is modeled by using a novel shape optimization strategy. Numerical calculations are performed with reference to the complete failure analysis of a single-notched fiber-reinforced composite beam subjected to a three-point bending test. Comparisons with reference solutions obtained by means of a fully microscopic analysis are presented in order to validate the proposed multiscale approach.

Adaptive multiscale modeling of fiber-reinforced composite materials subjected to transverse microcracking

GRECO, Fabrizio;Leonetti L;NEVONE BLASI, Paolo
2014-01-01

Abstract

In this work an innovative multiscale model able to perform complete failure analyses of fiber-reinforced composite materials subjected to transverse cracking is presented, taking advantage of an adaptive multilevel domain decomposition method in conjunction with a fracture criterion able to track the crack path. Competition between fiber/matrix interface debonding and kinking phenomena from and towards the matrix is accounted for, whereas continuous matrix cracking is modeled by using a novel shape optimization strategy. Numerical calculations are performed with reference to the complete failure analysis of a single-notched fiber-reinforced composite beam subjected to a three-point bending test. Comparisons with reference solutions obtained by means of a fully microscopic analysis are presented in order to validate the proposed multiscale approach.
2014
Polymer-matrix composites (PMCs); Transverse cracking; Finite element analysis (FEA); Micro-mechanics; Multiscale methods
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/137824
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 40
  • ???jsp.display-item.citation.isi??? 39
social impact