In this work an innovative multiscale model able to perform complete failure analyses of fiber-reinforced composite materials subjected to transverse cracking is presented, taking advantage of an adaptive multilevel domain decomposition method in conjunction with a fracture criterion able to track the crack path. Competition between fiber/matrix interface debonding and kinking phenomena from and towards the matrix is accounted for, whereas continuous matrix cracking is modeled by using a novel shape optimization strategy. Numerical calculations are performed with reference to the complete failure analysis of a single-notched fiber-reinforced composite beam subjected to a three-point bending test. Comparisons with reference solutions obtained by means of a fully microscopic analysis are presented in order to validate the proposed multiscale approach.
Adaptive multiscale modeling of fiber-reinforced composite materials subjected to transverse microcracking
GRECO, Fabrizio;Leonetti L;NEVONE BLASI, Paolo
2014-01-01
Abstract
In this work an innovative multiscale model able to perform complete failure analyses of fiber-reinforced composite materials subjected to transverse cracking is presented, taking advantage of an adaptive multilevel domain decomposition method in conjunction with a fracture criterion able to track the crack path. Competition between fiber/matrix interface debonding and kinking phenomena from and towards the matrix is accounted for, whereas continuous matrix cracking is modeled by using a novel shape optimization strategy. Numerical calculations are performed with reference to the complete failure analysis of a single-notched fiber-reinforced composite beam subjected to a three-point bending test. Comparisons with reference solutions obtained by means of a fully microscopic analysis are presented in order to validate the proposed multiscale approach.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.