We show that the commutativity, the associativity and the distributivity of the operation $a\circ b=\sqrt{a}b\sqrt{a}$ on the set of all positive invertible elements of a C*-algebra $\mathcal{A}$ are all equivalent to the commutativity of $\mathcal{A}$. We also present abstract characterizations of the operation $\circ$ and a few related ones too.
On the standard K-loop structure of positive invertible elements in a C*-algebra, / Beneduci R; Molnar L. - In: JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS. - ISSN 0022-247X. - 420(2014), pp. 551-562.
Scheda prodotto non validato
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
Titolo: | On the standard K-loop structure of positive invertible elements in a C*-algebra, |
Autori: | |
Data di pubblicazione: | 2014 |
Rivista: | |
Citazione: | On the standard K-loop structure of positive invertible elements in a C*-algebra, / Beneduci R; Molnar L. - In: JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS. - ISSN 0022-247X. - 420(2014), pp. 551-562. |
Handle: | http://hdl.handle.net/20.500.11770/138299 |
Appare nelle tipologie: | 1.1 Articolo in rivista |