We show that the commutativity, the associativity and the distributivity of the operation $a\circ b=\sqrt{a}b\sqrt{a}$ on the set of all positive invertible elements of a C*-algebra $\mathcal{A}$ are all equivalent to the commutativity of $\mathcal{A}$. We also present abstract characterizations of the operation $\circ$ and a few related ones too.

On the standard K-loop structure of positive invertible elements in a C*-algebra,

BENEDUCI, Roberto;
2014-01-01

Abstract

We show that the commutativity, the associativity and the distributivity of the operation $a\circ b=\sqrt{a}b\sqrt{a}$ on the set of all positive invertible elements of a C*-algebra $\mathcal{A}$ are all equivalent to the commutativity of $\mathcal{A}$. We also present abstract characterizations of the operation $\circ$ and a few related ones too.
2014
C*-algebras; K-loops structure; Jordan *-automorphism
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/138299
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 21
social impact