Using the theory of fixed point index, we establish new results for the existence of nonzero solutions of integral equations of the form $u(t)=\int_{G}k(t,s)f(s,u(s))\,ds$, where $G$ is a compact set in $\R^{n}$ and $k$ changes sign, so positive solutions may not exist, $f$ satisfies Carath\'{e}odory conditions and $k$ may be discontinuous. We apply our results to prove the existence of nontrivial solutions of some nonlocal boundary value problems.

Nonzero solutions of Hammerstein integral equations with discontinuous kernels

INFANTE, GENNARO;
2002

Abstract

Using the theory of fixed point index, we establish new results for the existence of nonzero solutions of integral equations of the form $u(t)=\int_{G}k(t,s)f(s,u(s))\,ds$, where $G$ is a compact set in $\R^{n}$ and $k$ changes sign, so positive solutions may not exist, $f$ satisfies Carath\'{e}odory conditions and $k$ may be discontinuous. We apply our results to prove the existence of nontrivial solutions of some nonlocal boundary value problems.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/20.500.11770/138406
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 62
  • ???jsp.display-item.citation.isi??? 59
social impact