This paper deals with phase transitions corresponding to an energy which is the sum of a kinetic part of p-Laplacian type and a double well potential h(0) with suitable growth conditions. We prove that level sets of solutions of Delta(p)u=h(0)'(u) possessing a certain decay property satisfy a mean curvature equation in a suitable weak viscosity sense. From this, we show that, if the above level sets approach uniformly a hypersurface, the latter has zero mean curvature.

Mean curvature properties for p-Laplace phase transitions

B. Sciunzi;
2005-01-01

Abstract

This paper deals with phase transitions corresponding to an energy which is the sum of a kinetic part of p-Laplacian type and a double well potential h(0) with suitable growth conditions. We prove that level sets of solutions of Delta(p)u=h(0)'(u) possessing a certain decay property satisfy a mean curvature equation in a suitable weak viscosity sense. From this, we show that, if the above level sets approach uniformly a hypersurface, the latter has zero mean curvature.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/138558
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 16
social impact