We prove a weak comparison principle in narrow domains for sub-super solutions to -Delta(p)u = f(u) in the case 1 < p <= 2 and f locally Lipschitz continuous. We exploit it to get the monotonicity of positive solutions to -Delta(p)u = f(u) in half spaces, in the case 2N+2/N+ 2 < p <= 2 and f positive. Also we use the monotonicity result to deduce some Liouville-type theorems. We then consider a class of sign-changing nonlinearities and prove a monotonicity and a one-dimensional symmetry result, via the same techniques and some general a-priori estimates.

Monotonicity and one-dimensional symmetry for solutions of -Delta(p)u = f(u) in half-spaces

L. Montoro;B. Sciunzi
2012-01-01

Abstract

We prove a weak comparison principle in narrow domains for sub-super solutions to -Delta(p)u = f(u) in the case 1 < p <= 2 and f locally Lipschitz continuous. We exploit it to get the monotonicity of positive solutions to -Delta(p)u = f(u) in half spaces, in the case 2N+2/N+ 2 < p <= 2 and f positive. Also we use the monotonicity result to deduce some Liouville-type theorems. We then consider a class of sign-changing nonlinearities and prove a monotonicity and a one-dimensional symmetry result, via the same techniques and some general a-priori estimates.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/138560
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 35
  • ???jsp.display-item.citation.isi??? 30
social impact