We prove Ornstein–Zernike behaviour in every direction for finite connectionfunctions of the random cluster model on $\mathbf{Z}^d, d \geq 3$, for $q \geq 1$, when occupation probabilitiesof the bonds are close to 1. Moreover, we prove that equi-decay surfaces are locally analytic,strictly convex, with positive Gaussian curvature.
On the Ornstein-Zernike behaviour for the supercritical Random-Cluster model on $\mathbb{Z}^d, d \geq 3$
GIANFELICE, Michele
2015-01-01
Abstract
We prove Ornstein–Zernike behaviour in every direction for finite connectionfunctions of the random cluster model on $\mathbf{Z}^d, d \geq 3$, for $q \geq 1$, when occupation probabilitiesof the bonds are close to 1. Moreover, we prove that equi-decay surfaces are locally analytic,strictly convex, with positive Gaussian curvature.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.