A global optimization problem is studied where the objective function f(x) is a multidimensional black-box function and its gradient f′(x) satisfies the Lipschitz condition over a hyperinterval with an unknown Lipschitz constant K. Different methods for solving this problem by using an a priori given estimate of K, its adaptive estimates, and adaptive estimates of local Lipschitz constants are known in the literature. Recently, the authors have proposed a one-dimensional algorithm working with multiple estimates of the Lipschitz constant for f′(x) (the existence of such an algorithm was a challenge for 15 years). In this paper, a new multidimensional geometric method evolving the ideas of this one-dimensional scheme and using an efficient one-point-based partitioning strategy is proposed. Numerical experiments executed on 800 multidimensional test functions demonstrate quite a promising performance in comparison with popular DIRECT-based methods.
A global optimization problem is studied where the objective function f(x) is a multidimensional black-box function and its gradient f′(x) satisfies the Lipschitz condition over a hyperinterval with an unknown Lipschitz constant K. Different methods for solving this problem by using an a priori given estimate of K, its adaptive estimates, and adaptive estimates of local Lipschitz constants are known in the literature. Recently, the authors have proposed a one-dimensional algorithm working with multiple estimates of the Lipschitz constant for f′(x) (the existence of such an algorithm was a challenge for 15 years). In this paper, a new multidimensional geometric method evolving the ideas of this one-dimensional scheme and using an efficient one-point-based partitioning strategy is proposed. Numerical experiments executed on 800 multidimensional test functions demonstrate quite a promising performance in comparison with popular DIRECT-based methods.
Lipschitz gradients for global optimization in a one-point-based partitioning scheme
KVASOV, Dmitry;SERGEEV, Yaroslav
2012-01-01
Abstract
A global optimization problem is studied where the objective function f(x) is a multidimensional black-box function and its gradient f′(x) satisfies the Lipschitz condition over a hyperinterval with an unknown Lipschitz constant K. Different methods for solving this problem by using an a priori given estimate of K, its adaptive estimates, and adaptive estimates of local Lipschitz constants are known in the literature. Recently, the authors have proposed a one-dimensional algorithm working with multiple estimates of the Lipschitz constant for f′(x) (the existence of such an algorithm was a challenge for 15 years). In this paper, a new multidimensional geometric method evolving the ideas of this one-dimensional scheme and using an efficient one-point-based partitioning strategy is proposed. Numerical experiments executed on 800 multidimensional test functions demonstrate quite a promising performance in comparison with popular DIRECT-based methods.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.