This article discusses mechanisms of pattern formation in 2D, self replicating cellular automata (CAs). In particular, we present mechanisms for structure replication that provide insight into analogous processes in the biological world. After examining self-replicating structures and the way they reproduce, we Consider their fractal properties and scale invariance. We explore the space or all possible mutations, showing that despite their apparent differences, many patterns produced by CAs arc based on universal models of development and that mutations may lead either to stable or to unstable development dynamics. An example of this process for all Possible one-step Mutations of one specific CA is given. We have demonstrated that a self replicating system can carry out many slightly different but related entities, realizing new different growth models. We infer that self replicating systems exist in an intermediate regime between order and chaos, showing that these models degrade into chaotic configurations, passing through a series of transition stages. This process is quantified by measuring the I Jamming distances between the pattern Produced by the original self replicator and those produced by mutated systems. The analysis shows that many different mechanisms may be involved in patterning phenomena. These include changes in the external or internal layers of the structure, substitution of elements, differential rates of growth in different parts of the structure, structural modifications, changes in the original model, the emergence of different structures governed by different CA rules, and changes in the self-replication process.

Emergent patterning phenomena in 2D cellular automata

BILOTTA, Eleonora;PANTANO, Pietro Salvatore
2005-01-01

Abstract

This article discusses mechanisms of pattern formation in 2D, self replicating cellular automata (CAs). In particular, we present mechanisms for structure replication that provide insight into analogous processes in the biological world. After examining self-replicating structures and the way they reproduce, we Consider their fractal properties and scale invariance. We explore the space or all possible mutations, showing that despite their apparent differences, many patterns produced by CAs arc based on universal models of development and that mutations may lead either to stable or to unstable development dynamics. An example of this process for all Possible one-step Mutations of one specific CA is given. We have demonstrated that a self replicating system can carry out many slightly different but related entities, realizing new different growth models. We infer that self replicating systems exist in an intermediate regime between order and chaos, showing that these models degrade into chaotic configurations, passing through a series of transition stages. This process is quantified by measuring the I Jamming distances between the pattern Produced by the original self replicator and those produced by mutated systems. The analysis shows that many different mechanisms may be involved in patterning phenomena. These include changes in the external or internal layers of the structure, substitution of elements, differential rates of growth in different parts of the structure, structural modifications, changes in the original model, the emergence of different structures governed by different CA rules, and changes in the self-replication process.
2005
Cellular automata; self-replicating structures; patterning phenomena
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/139694
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 22
social impact