A P2P-based framework supporting the extraction of aggregates from historical multidimensional data is proposed, which provides efficient and robust query evaluation. When a data population is published, data are summarized in a synopsis, consisting of an index built on top of a set of subsynopses (storing compressed representations of distinct data portions). The index and the subsynopses are distributed across the network, and suitable replication mechanisms taking into account the query workload and network conditions are employed that provide the appropriate coverage for both the index and the subsynopses.

Managing Multidimensional Historical Aggregate Data in Unstructured P2P Networks

FURFARO, Filippo;PUGLIESE, Andrea
2010-01-01

Abstract

A P2P-based framework supporting the extraction of aggregates from historical multidimensional data is proposed, which provides efficient and robust query evaluation. When a data population is published, data are summarized in a synopsis, consisting of an index built on top of a set of subsynopses (storing compressed representations of distinct data portions). The index and the subsynopses are distributed across the network, and suitable replication mechanisms taking into account the query workload and network conditions are employed that provide the appropriate coverage for both the index and the subsynopses.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/139728
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 3
social impact