This paper studies some possible combinations of the best features of the quasi-Newton symmetric rank-one (SR1), BFGS and extra updating BFGS algorithms for solving nonlinear unconstrained optimization problems. These combinations depend on switching between the BFGS and SR1 updates so that certain desirable properties are imposed. The presented numerical results show that the proposed switching algorithm outperforms the robust BFGS method.

On the performance of switching BFGS/SR1 algorithms for unconstrained optimization

FUDULI, Antonio;MUSMANNO, Roberto
2004-01-01

Abstract

This paper studies some possible combinations of the best features of the quasi-Newton symmetric rank-one (SR1), BFGS and extra updating BFGS algorithms for solving nonlinear unconstrained optimization problems. These combinations depend on switching between the BFGS and SR1 updates so that certain desirable properties are imposed. The presented numerical results show that the proposed switching algorithm outperforms the robust BFGS method.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/139903
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 1
social impact