In this work, we describe the development of a compartmentalized membrane system using neonatal rodent hippocampal cells and human mesenchymal stem cells (hMSCs) to investigate the neuroprotective effects of hMSCs. To elucidate this interaction an in vitro oxygen-glucose deprivation (OGD) model was used that mimics central nervous system insults in vivo. Cells were cultured in a membrane system with a sandwich configuration in which the hippocampal cells were seeded on a fluorocarbon (FC) membrane, and were separated by hMSCs through a semipermeable polyethersulfone (PES) membrane that ensures the transport of molecules and paracrine factors, but prevents cell-to-cell contact. This system was used to simulate a cerebral ischemic damage by inducing OGD for 120 min. The core contribution of the work highlights the neuroprotective effects of hMSCs on hippocampal cells in a membrane system for the first time. The novel results show that hMSC secretome factors protect hippocampal cells against OGD insults as indicated by the conservation of specific structural and functional cell features together with the development of a highly branched neural network after the damage. Moreover, neuronal cells co-cultured with hMSCs before OGD insult were able to maintain BDNF production and O2 consumption and did not express the apoptotic markers that were expressed in similarly insulted neuronal cells that had not been co-cultured with hMSCs. This compartmentalized membrane system appears to be a very useful and reliable system for studying the neuroprotective effects of hMSCs and identifying secreted factors that may be involved.
Neuroprotective effect of human mesenchymal stem cells in a compartmentalized neuronal membrane system
Canonaco M;BILOTTA, Eleonora;PANTANO, Pietro Salvatore;
2015-01-01
Abstract
In this work, we describe the development of a compartmentalized membrane system using neonatal rodent hippocampal cells and human mesenchymal stem cells (hMSCs) to investigate the neuroprotective effects of hMSCs. To elucidate this interaction an in vitro oxygen-glucose deprivation (OGD) model was used that mimics central nervous system insults in vivo. Cells were cultured in a membrane system with a sandwich configuration in which the hippocampal cells were seeded on a fluorocarbon (FC) membrane, and were separated by hMSCs through a semipermeable polyethersulfone (PES) membrane that ensures the transport of molecules and paracrine factors, but prevents cell-to-cell contact. This system was used to simulate a cerebral ischemic damage by inducing OGD for 120 min. The core contribution of the work highlights the neuroprotective effects of hMSCs on hippocampal cells in a membrane system for the first time. The novel results show that hMSC secretome factors protect hippocampal cells against OGD insults as indicated by the conservation of specific structural and functional cell features together with the development of a highly branched neural network after the damage. Moreover, neuronal cells co-cultured with hMSCs before OGD insult were able to maintain BDNF production and O2 consumption and did not express the apoptotic markers that were expressed in similarly insulted neuronal cells that had not been co-cultured with hMSCs. This compartmentalized membrane system appears to be a very useful and reliable system for studying the neuroprotective effects of hMSCs and identifying secreted factors that may be involved.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.