Rollout algorithms are innovative methods, recently proposed by Bertsekas et al. [3], for solving NPhard combinatorial optimization problems. The main advantage of these approaches is related to their capability of magnifying the effectiveness of any given heuristic algorithm. However, one of the main limitations of rollout algorithms in solving large-scale problems is represented by their computational complexity. Innovative versions of rollout algorithms, aimed at reducing the computational complexity in sequential environments, have been proposed in our previous work [9]. In this paper, we show that a further reduction can be accomplished by using parallel technologies. Indeed, rollout algorithms have very appealing characteristics that make them suitable for efficient and effective implementations in parallel environments, thus extending their range of relevant practical applications. We propose two strategies for parallelizing rollout algorithms and we analyze their performance by considering a shared-memory paradigm. The computational experiments have been carried out on a SGI Origin 2000 with 8 processors, by considering two classical combinatorial optimization problems. The numerical results show that a good reduction of the execution time can be obtained by exploiting parallel computing systems.

Parallelization Strategies for Rollout Algorithms

GUERRIERO, Francesca;
2005-01-01

Abstract

Rollout algorithms are innovative methods, recently proposed by Bertsekas et al. [3], for solving NPhard combinatorial optimization problems. The main advantage of these approaches is related to their capability of magnifying the effectiveness of any given heuristic algorithm. However, one of the main limitations of rollout algorithms in solving large-scale problems is represented by their computational complexity. Innovative versions of rollout algorithms, aimed at reducing the computational complexity in sequential environments, have been proposed in our previous work [9]. In this paper, we show that a further reduction can be accomplished by using parallel technologies. Indeed, rollout algorithms have very appealing characteristics that make them suitable for efficient and effective implementations in parallel environments, thus extending their range of relevant practical applications. We propose two strategies for parallelizing rollout algorithms and we analyze their performance by considering a shared-memory paradigm. The computational experiments have been carried out on a SGI Origin 2000 with 8 processors, by considering two classical combinatorial optimization problems. The numerical results show that a good reduction of the execution time can be obtained by exploiting parallel computing systems.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/140299
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 10
social impact