A fractal analysis of the soil retention and hydraulic conductivity curves is presented. The retention process is modeled by a two fractal regimes: one pertaining to high water content values, and another accounting for the low water content data. This significantly improves the physical insight of the retention process as compared with the case of one-fractal models. The fractal dimensions characterizing the two regimes are estimated by fitting the retention curve model upon real data, and subsequently they are used to determine the hydraulic conductivity which for the retention curve models of Mualem and Burdine, is obtained in closed form. The reliability of the model is tested against independent conductivity data collected in a field-scale campaign.
Two Fractal Regimes of the Soil Hydraulic Properties
FALLICO, Carmine;VELTRI, Massimo
2014-01-01
Abstract
A fractal analysis of the soil retention and hydraulic conductivity curves is presented. The retention process is modeled by a two fractal regimes: one pertaining to high water content values, and another accounting for the low water content data. This significantly improves the physical insight of the retention process as compared with the case of one-fractal models. The fractal dimensions characterizing the two regimes are estimated by fitting the retention curve model upon real data, and subsequently they are used to determine the hydraulic conductivity which for the retention curve models of Mualem and Burdine, is obtained in closed form. The reliability of the model is tested against independent conductivity data collected in a field-scale campaign.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.