Solar flares are often associated with changes in the fine magnetic structure of the emitting active region. Such topological modification results in variations of both the scaling properties of the fields' fluctuations, and the fractal dimension of the associated gradients. The use of cancellation analysis of the current density has been attempted for the identification and quantitative estimation of such changes. The characteristics of the magnetic vector as measured by THEMIS telescope for the active region NOAA10019 have been studied in this paper, suggesting the presence of disrupted current filaments. The variation of the fractal dimension of the current structures, and in particular their smoothing, is discussed in relationship with occurrence of one flare in the active region.
Cancellation analysis of current density in solar active region NOAA10019
PRIMAVERA, Leonardo;SERVIDIO, SERGIO;LEPRETI, Fabio;CARBONE, Vincenzo
2015-01-01
Abstract
Solar flares are often associated with changes in the fine magnetic structure of the emitting active region. Such topological modification results in variations of both the scaling properties of the fields' fluctuations, and the fractal dimension of the associated gradients. The use of cancellation analysis of the current density has been attempted for the identification and quantitative estimation of such changes. The characteristics of the magnetic vector as measured by THEMIS telescope for the active region NOAA10019 have been studied in this paper, suggesting the presence of disrupted current filaments. The variation of the fractal dimension of the current structures, and in particular their smoothing, is discussed in relationship with occurrence of one flare in the active region.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.