Early growth response-1 (Egr-1) is an immediate early gene involved in relevant biological events including the proliferation of diverse types of cell tumors. In a microarray analysis performed in breast cancer cells, 17β-estradiol (E2) and the estrogen receptor antagonist 4-hydroxitamoxifen (OHT) up-regulated Egr-1 through the G protein-coupled receptor named GPR30/GPER. Hence, in this study, we aimed to provide evidence regarding the ability of E2, OHT and the selective GPER ligand G-1 to regulate Egr-1 expression and function through the GPER/EGFR/ERK transduction pathway in both Ishikawa (endometrial) and SkBr3 (breast) cancer cells. Interestingly, we demonstrate that Egr-1 is involved in the transcription of genes regulating cell proliferation like CTGF and cyclin D1 and required for the proliferative effects induced by E2, OHT, and G-1 in both Ishikawa and SkBr3 cells. In addition, we show that GPER mediates the expression of Egr-1 also in carcinoma-associated fibroblasts (CAFs). Our data suggest that Egr-1 may represent an important mediator of the biological effects induced by E2 and OHT through GPER/EGFR/ERK signaling in breast and endometrial cancer cells. The results obtained in CAFs provide further evidence regarding the potential role exerted by the GPER-dependent Egr-1 up-regulation in tumor development and progression. Therefore, Egr-1 may be included among the bio-markers of estrogen and antiestrogen actions and may be considered as a further therapeutic target in both breast and endometrial tumors.
GPER mediates the Egr-1 expression induced by 17β-estradiol and 4-hydroxitamoxifen in breast and endometrial cancer cells.
VIVACQUA, Adele;MAGGIOLINI, Marcello
2012-01-01
Abstract
Early growth response-1 (Egr-1) is an immediate early gene involved in relevant biological events including the proliferation of diverse types of cell tumors. In a microarray analysis performed in breast cancer cells, 17β-estradiol (E2) and the estrogen receptor antagonist 4-hydroxitamoxifen (OHT) up-regulated Egr-1 through the G protein-coupled receptor named GPR30/GPER. Hence, in this study, we aimed to provide evidence regarding the ability of E2, OHT and the selective GPER ligand G-1 to regulate Egr-1 expression and function through the GPER/EGFR/ERK transduction pathway in both Ishikawa (endometrial) and SkBr3 (breast) cancer cells. Interestingly, we demonstrate that Egr-1 is involved in the transcription of genes regulating cell proliferation like CTGF and cyclin D1 and required for the proliferative effects induced by E2, OHT, and G-1 in both Ishikawa and SkBr3 cells. In addition, we show that GPER mediates the expression of Egr-1 also in carcinoma-associated fibroblasts (CAFs). Our data suggest that Egr-1 may represent an important mediator of the biological effects induced by E2 and OHT through GPER/EGFR/ERK signaling in breast and endometrial cancer cells. The results obtained in CAFs provide further evidence regarding the potential role exerted by the GPER-dependent Egr-1 up-regulation in tumor development and progression. Therefore, Egr-1 may be included among the bio-markers of estrogen and antiestrogen actions and may be considered as a further therapeutic target in both breast and endometrial tumors.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.