The volcanic products of Lipari Island (Aeolian Arc, Italy) younger than 10 ka are mostly aphyric rhyolitic pumices and obsidians emitted during unusual strombolian-type eruptions, which ended with the emplacement of lava flows. The last volcanic activity on the island dates back to 1230±40 AD, with the extrusion of Rocche Rosse (RR) obsidian lava flow. Recently, mafic enclaves of latitic to trachytic composition have been identified and an evolution process between these enclaves and the rhyolitic magma has been documented in detail [Davì, M., 2007. The Rocche Rosse rhyolitic lava flow (Lipari, Aeolian Islands): magmatological and volcanological aspects. Plinius, supplement to the European Journal of Mineralogy 33, 1– 8]. In this work textural and trace-element investigation of mineral phases of the RR enclaves, such as crystals of clinopyroxene, olivine, plagioclase, alkali-feldspar and biotite, was carried out to delineate the most recent feeding system of the island, since such a reconstruction could be significant in terms of hazard forecasting. The results indicate that most of the mineral phases are reversely or oscillatory zoned with respect to both major and trace elements, suggesting an early crystallization under low fO2 conditions from melts of intermediate composition, followed by a later growth from a more mafic (presumably shoshonitic–basaltic) magma than that from which their cores crystallized. Crystals of magnesium-rich pyroxene and forsteriticrich olivine are indicative of the presence of this shoshonitic basaltic magma. Based on microanalytical data, it is suggested here that the feeding system of recent Lipari volcanic activity was characterized by a shoshonitic–basaltic magma originating from a deep reservoir, which may have evolved and stopped in the crust, generating zoned magma chambers at different depths, in which latitic and rhyolitic magmas reside. The sudden arrival of a new input of mafic melt may have interacted with these resident fractionated magmas and triggered the eruption. A plumbing system of this type has been shown to be active in the southern sector of the Aeolian Islands since the last 42 ka [Gioncada, A., Mazzuoli, R., Milton, A., 2005. Magma mixing at Lipari (Aeolian Islands, Italy): Insights from textural and compositional features of phenocrysts. J. Volcanol. Geotherm. Res. 145, 97–118; Peccerillo, A., Frezzotti, M.L., De Astis, G., Ventura, G., 2006. Modeling the magma plumbing system of Vulcano (Aeolian Islands, Italy) by integrated fluid-inclusion geobarometry, petrology and geophysics. Geology 34, 17–20]. It is concluded that the hazard assessment of Lipari Island should take into account the arrival of deep and never erupted mafic melts as eruption triggers of more evolved shallower magma bodies.

A LA-ICP-MS study of minerals in the Rocche Rosse magmatic enclaves: evidence of a mafic input triggering the latest silicic eruption of Lipari Island (Aeolian Arc, Italy)". Journal of Volcanology and Geothermal Research

DE ROSA, Rosanna;BARCA D.
2009-01-01

Abstract

The volcanic products of Lipari Island (Aeolian Arc, Italy) younger than 10 ka are mostly aphyric rhyolitic pumices and obsidians emitted during unusual strombolian-type eruptions, which ended with the emplacement of lava flows. The last volcanic activity on the island dates back to 1230±40 AD, with the extrusion of Rocche Rosse (RR) obsidian lava flow. Recently, mafic enclaves of latitic to trachytic composition have been identified and an evolution process between these enclaves and the rhyolitic magma has been documented in detail [Davì, M., 2007. The Rocche Rosse rhyolitic lava flow (Lipari, Aeolian Islands): magmatological and volcanological aspects. Plinius, supplement to the European Journal of Mineralogy 33, 1– 8]. In this work textural and trace-element investigation of mineral phases of the RR enclaves, such as crystals of clinopyroxene, olivine, plagioclase, alkali-feldspar and biotite, was carried out to delineate the most recent feeding system of the island, since such a reconstruction could be significant in terms of hazard forecasting. The results indicate that most of the mineral phases are reversely or oscillatory zoned with respect to both major and trace elements, suggesting an early crystallization under low fO2 conditions from melts of intermediate composition, followed by a later growth from a more mafic (presumably shoshonitic–basaltic) magma than that from which their cores crystallized. Crystals of magnesium-rich pyroxene and forsteriticrich olivine are indicative of the presence of this shoshonitic basaltic magma. Based on microanalytical data, it is suggested here that the feeding system of recent Lipari volcanic activity was characterized by a shoshonitic–basaltic magma originating from a deep reservoir, which may have evolved and stopped in the crust, generating zoned magma chambers at different depths, in which latitic and rhyolitic magmas reside. The sudden arrival of a new input of mafic melt may have interacted with these resident fractionated magmas and triggered the eruption. A plumbing system of this type has been shown to be active in the southern sector of the Aeolian Islands since the last 42 ka [Gioncada, A., Mazzuoli, R., Milton, A., 2005. Magma mixing at Lipari (Aeolian Islands, Italy): Insights from textural and compositional features of phenocrysts. J. Volcanol. Geotherm. Res. 145, 97–118; Peccerillo, A., Frezzotti, M.L., De Astis, G., Ventura, G., 2006. Modeling the magma plumbing system of Vulcano (Aeolian Islands, Italy) by integrated fluid-inclusion geobarometry, petrology and geophysics. Geology 34, 17–20]. It is concluded that the hazard assessment of Lipari Island should take into account the arrival of deep and never erupted mafic melts as eruption triggers of more evolved shallower magma bodies.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/142062
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 32
  • ???jsp.display-item.citation.isi??? 30
social impact