Using high resolution Cluster satellite observations, we show that the turbulent solar wind is populated by magnetic discontinuities at different scales, going from proton down to electron scales. The structure of these layers resembles the Harris equilibrium profile in plasmas. Using a multi-dimensional intermittency technique, we show that these structures are connected through the scales. Supported by numerical simulations of magnetic reconnection, we show that observations are consistent with a scenario where many current layers develop in turbulence, and where the outflow of these reconnection events are characterized by complex sub-proton networks of secondary islands, in a self-similar way. The present work establishes that the picture of "reconnection in turbulence" and "turbulent reconnection", separately invoked as ubiquitous, coexist in space plasmas.
The Complex Structure of Magnetic Field Discontinuities in the Turbulent Solar Wind
GRECO, Antonella;Perri S;SERVIDIO, SERGIO;VELTRI, Pierluigi
2016-01-01
Abstract
Using high resolution Cluster satellite observations, we show that the turbulent solar wind is populated by magnetic discontinuities at different scales, going from proton down to electron scales. The structure of these layers resembles the Harris equilibrium profile in plasmas. Using a multi-dimensional intermittency technique, we show that these structures are connected through the scales. Supported by numerical simulations of magnetic reconnection, we show that observations are consistent with a scenario where many current layers develop in turbulence, and where the outflow of these reconnection events are characterized by complex sub-proton networks of secondary islands, in a self-similar way. The present work establishes that the picture of "reconnection in turbulence" and "turbulent reconnection", separately invoked as ubiquitous, coexist in space plasmas.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.