Let H be a Hilbert space. Let (Wn)n∈N be a suitable family of mappings. Let S be a nonexpansive mapping and D be a strongly monotone operator. We study the convergence of the general scheme xn+1 = Wn(αnSxn + (1 – αn)(I – μnD)xn) in dependence on the coefficients (αn)n∈N, (μn)n∈N.
On the role of the coefficients about the strong convergence of a general type Mann iterative scheme
MARINO, Giuseppe;MUGLIA, Luigi
2015-01-01
Abstract
Let H be a Hilbert space. Let (Wn)n∈N be a suitable family of mappings. Let S be a nonexpansive mapping and D be a strongly monotone operator. We study the convergence of the general scheme xn+1 = Wn(αnSxn + (1 – αn)(I – μnD)xn) in dependence on the coefficients (αn)n∈N, (μn)n∈N.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.