The dissolution rates of the minerals actinolite and chlorite were determined from metabasalt element release rates measured at 25 degrees C and 2 < pH < 12 in mixed flow reactors. At pH 2.0 and 3.2, chlorite rates are 3 and 5 times faster, respectively, than corresponding actinolite rates, whereas the Si release rates from metabasalt are intermediate between chlorite and actinolite rates. In contrast, at pH 7.2 and 12.0, chlorite, actinolite and the metabasalt release Si at the same rates within analytical uncertainties. At pH 6.3, it was only possible to obtain the chlorite dissolution rate; at this pH the measured chlorite dissolution rate is 10(-11.86) mol/m(2)/s. Mineral dissolution rates obtained in this study are within the range of corresponding values reported in the literature. This observation suggests that the dissolution rates of major-constituent minerals in a multi-phase rock are not affected by the presence of the other minerals. This conclusion validates the common assumption that the dissolution rate of an individual mineral is equal to that of the same mineral in a dissolving multi-mineralogic rock, at least for major constituents.

Dissolution rates of actinolite and chlorite from a whole-rock experimental study of metabasalt dissolution from 2≤pH≤12 at 25 °C

APOLLARO, Carmine;DE ROSA, Rosanna;
2014-01-01

Abstract

The dissolution rates of the minerals actinolite and chlorite were determined from metabasalt element release rates measured at 25 degrees C and 2 < pH < 12 in mixed flow reactors. At pH 2.0 and 3.2, chlorite rates are 3 and 5 times faster, respectively, than corresponding actinolite rates, whereas the Si release rates from metabasalt are intermediate between chlorite and actinolite rates. In contrast, at pH 7.2 and 12.0, chlorite, actinolite and the metabasalt release Si at the same rates within analytical uncertainties. At pH 6.3, it was only possible to obtain the chlorite dissolution rate; at this pH the measured chlorite dissolution rate is 10(-11.86) mol/m(2)/s. Mineral dissolution rates obtained in this study are within the range of corresponding values reported in the literature. This observation suggests that the dissolution rates of major-constituent minerals in a multi-phase rock are not affected by the presence of the other minerals. This conclusion validates the common assumption that the dissolution rate of an individual mineral is equal to that of the same mineral in a dissolving multi-mineralogic rock, at least for major constituents.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/143738
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 40
  • ???jsp.display-item.citation.isi??? 35
social impact